Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In physical-layer security and cryptography we are concerned with the security of the transmitted data, while in low probability of intercept (LPI) communication with protecting the privacy of the end users. In our recent publications related to LPI communications and radars over free-space optical (FSO) links we proposed to hide the constant-amplitude modulated data, imposed on thermal source beam, in ambient solar radiation to protect the end users privacy and at the same time improve the reliability and security, while reducing the detectability of transmitted signal by the adversary Willie. In order to study both LPI and covert communication concepts we have developed an FSO communication testbed at the University of Arizona campus with a 1.5 km-long FSO link. Here we present results of our FSO experiments, where we conducted both LPI and covert communications at data rates ranging from 125 Mb/s to 10 Gb/s, wherein the information beam is kept completely hidden under the ambient solar radiations as random thermal noise. To improve the system reliability to atmospheric turbulence effects we make use of wavelength diversity method as a low-cost, easy to implement and far more practical alternative to conventional adaptive optics systems.more » « less
-
Abstract Cryptography is crucial in protecting sensitive information and ensuring secure transactions in a time when data security and privacy are major concerns. Traditional cryptography techniques, which depend on mathematical algorithms and secret keys, have historically protected against data breaches and illegal access. With the advent of quantum computers, traditional cryptography techniques are at risk. In this work, we present a cryptography idea using logical phi-bits, which are classical analogues of quantum bits (qubits) and are supported by driven acoustic metamaterials. The state of phi-bits displays superpositions similar to quantum bits, with complex amplitudes and phases. We present a representation of the state vector of single and multi-phi-bit systems. The state vector of multiple phi-bits system lies in a complex exponentially scaling Hilbert space and is used to encode information or messages. By changing the driving conditions of the metamaterial, the information can be encrypted with exceptional security and efficiency. We illustrate experimentally the practicality and effectiveness of encoding and encryption of a message using a 5 phi-bits system and emphasize the scalability of this approach to anNphi-bits system with the same processing time.more » « less
-
Quantum cryptography is the study of unconditional information security against an all-powerful eavesdropper in secret key distillation. However, the assumption of an omnipotent eavesdropper is too strict for some realistic implementations. In this paper, we study the realistic application model of secret key distillation over a satellite-to-satellite free-space channel in which we impose a reasonable restriction on the eavesdropper by setting an exclusion zone around the legitimate receiver as a defense strategy. We first study the case where the eavesdropper’s aperture size is unlimited so their power is only restricted by the exclusion zone. Then, we limit Eve’s aperture to a finite size and study the straightforward case when her aperture is in the same plane of Bob’s, investigating how an exclusion zone can help improve security. Correspondingly, we determine the secret key rate lower bounds as well as upper bounds. Furthermore, we also apply our results on specific discrete variable (DV) and continuous variable (CV) protocols for comparison. We show that, by putting reasonable restrictions on the eavesdropper through the realistic assumptions of an inaccessible exclusion zone, we can significantly increase the key rate in comparison to those without and do so with relatively lower transmission frequency. We conclude that this model is suitable for extended analysis in many light-gathering scenarios and for different carrier wavelengths.more » « less
-
Conventionally, unconditional information security has been studied by quantum cryptography although the assumption of an omnipotent eavesdropper is too strict for some realistic implementations. In this paper, we study the realistic secret key distillation over a satellite-to-satellite free space optics channel where we assume a limited-sized aperture eavesdropper (Eve) in the same plane of the legitimate receiver (Bob) and determine the secret key rate (SKR) lower bounds correspondingly. We first study the input power dependency without assumptions on Bob’s detection scheme before optimizing the input power to determine lower bounds as functions of transmission distances, center frequency or Eve aperture radius. Then we calculate analytical expressions regarding the SKR lower bound and upper bound as transmission distance goes to infinity. We also incorporate specific discrete variable (DV) and continuous variable (CV) protocols for comparison. We demonstrate that significantly higher SKR lower bounds can be achieved compared to traditional unrestricted Eve scenario.more » « less
An official website of the United States government
